Least Upper Bounds

Recall the definitions of upper bound and least upper bound.

Definition. A set A of real numbers is bounded above if there is a number x such that
\[x \geq a \quad \text{for every } a \text{ in } A. \]
Such a number x is called an upper bound for A.

Definition. A number x is a least upper bound for a set A if
\[
\begin{aligned}
& x \text{ is an upper bound for } A, \\
& \text{if } y \text{ is an upper bound for } A, \text{ then } x \leq y.
\end{aligned}
\]
Such a number x is also called the supremum for A and sometimes denoted by $\sup A$ or $\text{lub } A$.

There is an equivalent definition of least upper bound.

Definition. A number x is a least upper bound for a set A if
\[
\begin{aligned}
& x \text{ is an upper bound for } A, \\
& \text{for every } \epsilon > 0, \text{ there is an } x_{\epsilon} \in A \text{ such that } x - \epsilon < x_{\epsilon} \leq x.
\end{aligned}
\]
Such a number x is also called the supremum for A and sometimes denoted by $\sup A$ or $\text{lub } A$.

To show that the two definitions are equivalent, we must prove the following If and Only If Theorem:

Theorem. If x is an upper bound for A, then
\[x \leq y. \]
if and only if
\[\text{for every } \epsilon > 0, \text{ there is an } x_{\epsilon} \in A \text{ such that } x - \epsilon < x_{\epsilon} \leq x. \]

Proof: First $(2) \Rightarrow (2')$. Assume (2). The proof is by contradiction. Assume there IS an $\epsilon > 0$ such that there is no $x_{\epsilon} \in A$ such that $x - \epsilon < x_{\epsilon} \leq x$. But then $x - \epsilon$ would be an upper bound for A which is less than x.

Second $(2') \Rightarrow (2)$. Again use contradiction. If (2) is false and (2) is true, there is an upper bound b for A which satisfies $b < x$. Let $\epsilon = x - b > 0$. There is no $x_{\epsilon} \in A$ such that $x - \epsilon = b < x_{\epsilon} \leq x$.