```
9e math165 2 4 70.mw
```

Maple 10 Worksheet for Problems in Math 165 - Calculus for Business.

First load plots and student:

```
> restart:with(student):with (plots):
```

Problem 2.4.70 COMPOUND INTEREST

If \\$10000 is invested at an annual rate r (expressed as a decimal) compounded weekly, the total amount

principal P and interest) accumulated after 10 years is given by the formula $A = 10000*(1 + r/52)^(52*10)$.

(a) Find the rate of change of A wrt r.

We shall work a more general problem - assuming the interest is compunded N times per year so that $A = 10000*(1 + r/N)^{(N*10)}$.

```
> A:= proc(P,r,N,T)
    description `initial P, annual rate r (decimal), compound
N/year, T years`;
    P*(1 + r/N)^(N*T);
end proc;

> A(P,r,N,T);
> eval(A(10000,r,52,10));
```

description `initial P, annual rate r (decimal), compound N/year, T years `;

$$P*(1 + r/N)^{(N*T)}$$

 $A := \mathbf{proc}(P, r, N, T)$

end proc

$$P\left(1 + \frac{r}{N}\right)^{NT}$$

$$10000\left(1 + \frac{1}{52}r\right)^{520}$$
(1)

```
> dA_dr:= proc(P,r,N,T)
         description `derivative of A wrt r`;
         diff(A(P,r,N,T),r);
    end proc;
> dA_dr(P,r,N,T);

> eval(dA_dr(10000,r,52,10));
dA_dr:= proc(P,r,N,T) description `derivative of A wrt r`; diff(A(P,r,N,T),r) end proc
```

$$\frac{P\left(1+\frac{r}{N}\right)^{NT}T}{1+\frac{r}{N}}$$

$$100000 \left(1 + \frac{1}{52} r\right)^{519} \tag{2}$$

(3)

(b) Find the percentage rate of change of A wrt r when r = 0.05

end proc;

Percent Rate :=
$$\mathbf{proc}(P, r, N, T)$$

description `percentage rate of change A wrt r`;

100*(dA dr(P,r,N,T))/(A(P,r,N,T));

$$100 * dA dr(P, r, N, T) / A(P, r, N, T)$$

end proc

> Percent Rate(P,r,N,T);

Notice that the answer does not depend on P; (r/N) is usually very small.

> Percent Rate(10000,r,52,10);

$$\frac{100 T}{1 + \frac{r}{N}}$$

$$\frac{1000}{1 + \frac{1}{52} r}$$

> limit(Percent_Rate(1,r,N,T),N=infinity); 100 T (5)