```
math165 1 3 43.mw
```

Maple 10 Worksheet for Problems in Math 165 - Calculus for Business.

First load plots and student:

```
 with ( student) : with (plots) :
  Chapter 1 1.3 Problem 43 STOCK PRICES
```

1.3 Problem 43 (c): ... The IPO .price is $\S10$ per share.

Sketch the graph over a two year period under the scenario:

(c) The price rises steadily to \\$60 per share

during the first year, at which time, an accounting scandal is uncovered. The price gaps down to \\$25 per share, then steadily decreases to \\$5 over the next 3 months before rising at a constant rate at the end of a 2 year period.

We have different rates of change and a "gap". "steadily" and "constant rate" mean "linear"

We need formulas for P(t) - it is convenient to let t be in months:

For $0 \le t \le 12$, the slope (rate) is (60 - 10)/12, so

$$p_{-}1 := \mathbf{proc}(t) \ 10 + 25/6 * t \text{ end proc}$$

$$10$$

$$60$$
(1)

For $12 < t \le 15$, the slope (rate) is (5 - 25)/3, so

$$p_2 := \mathbf{proc}(t) \ 105 - 20/3 * t \text{ end proc}$$
25
5

(3)

For 15 < t < 24, the slope (rate) is (12 - 5)/9, so let

```
> plot([p_1(t),p_2(t),p_3(t)],t = 0 .. 24, color=[black,red,green],
    thickness = [2,3,4],labels = [`t = time in months`,``],legend=
    [`p_1 t = 0..12`,`p_2 t = 12..15`,`p_3 t = 15 .. 24`]);
```


The graph must be understood - which line to follow! We create a 'piecwise defined function'; Graphing of a piecewise defined function may be done on your calculator.

```
> p:= proc(t);
    piecewise(t < 12, p_1(t),t < 15, p_2(t),p_3(t));
    end proc;
    p := proc(t) piecewise(t < 12,p_1(t),t < 15,p_2(t),p_3(t)) end proc

> plot(p(t), t = 0 ... 24, p = 0..60,discont = true,tickmarks=[8,6],
    thickness = 4, labels = [`t = time in months`,`price`]);
```

