Let us find the second derivative of
\((x)\) at \(x = \theta\).

We note that the function \(f(x) = \frac{1}{x^2}\) is defined for all \(x \neq 0\).

Now, let us compute the function \(g(x) = \frac{\frac{d}{dx}f(x)}{f(x)}\) at \(x = \theta\).

\[
g(x) = \frac{\frac{d}{dx}f(x)}{f(x)} = \frac{-2x}{x^2} = \frac{-2}{x}
\]

On your calculator, there is a procedure which gives the maximum point and maximum value of a function.

\[
l = \frac{-2}{x}
\]

We see that the second derivative is \(g''(x) = \frac{6}{x^3}\).

We observe that the second derivative is negative for \(x > 0\) and positive for \(x < 0\).

Therefore, the function has a local minimum at \(x = 0\) and a local maximum at \(x = \pm \sqrt{2}\).

From the above information, we can conclude that
\((x)\) at \(x = \theta\) is a local maximum.

\[
\frac{\frac{d}{dx}f(x)}{f(x)} = \frac{-2}{x}
\]

We observe that the second derivative is negative for \(x > 0\) and positive for \(x < 0\).

Therefore, the function has a local minimum at \(x = 0\) and a local maximum at \(x = \pm \sqrt{2}\).

From the above information, we can conclude that
\((x)\) at \(x = \theta\) is a local maximum.

\[
\frac{\frac{d}{dx}f(x)}{f(x)} = \frac{-2}{x}
\]

We observe that the second derivative is negative for \(x > 0\) and positive for \(x < 0\).

Therefore, the function has a local minimum at \(x = 0\) and a local maximum at \(x = \pm \sqrt{2}\).

From the above information, we can conclude that
\((x)\) at \(x = \theta\) is a local maximum.

\[
\frac{\frac{d}{dx}f(x)}{f(x)} = \frac{-2}{x}
\]
\[
\frac{8 + \varepsilon}{10} = (y)\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (x) = \Delta : p < 0.
\]

The measure of a company's profit depends on the price at which the product is produced. Suppose the price is x and the company's profit is Δ.

\[
\Delta : (x) = \Delta : p < 0.
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\frac{8 + \varepsilon}{10} = (y)\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (x) = \Delta : p < 0.
\]

The measure of a company's profit depends on the price at which the product is produced. Suppose the price is x and the company's profit is Δ.

\[
\Delta : (x) = \Delta : p < 0.
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\frac{8 + \varepsilon}{10} = (y)\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (x) = \Delta : p < 0.
\]

The measure of a company's profit depends on the price at which the product is produced. Suppose the price is x and the company's profit is Δ.

\[
\Delta : (x) = \Delta : p < 0.
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\frac{8 + \varepsilon}{10} = (y)\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (x) = \Delta : p < 0.
\]

The measure of a company's profit depends on the price at which the product is produced. Suppose the price is x and the company's profit is Δ.

\[
\Delta : (x) = \Delta : p < 0.
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\frac{8 + \varepsilon}{10} = (y)\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

The measure of a company's profit depends on the price at which the product is produced. Suppose the price is x and the company's profit is Δ.

\[
\Delta : (x) = \Delta : p < 0.
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\frac{8 + \varepsilon}{10} = (y)\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

The measure of a company's profit depends on the price at which the product is produced. Suppose the price is x and the company's profit is Δ.

\[
\Delta : (x) = \Delta : p < 0.
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\frac{8 + \varepsilon}{10} = (y)\]

\[
\Delta : (y) = \Delta : f(y).
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

The measure of a company's profit depends on the price at which the product is produced. Suppose the price is x and the company's profit is Δ.

\[
\Delta : (x) = \Delta : p < 0.
\]

\[
\varepsilon \leq x \leq \varepsilon + \frac{9}{10}.
\]

\[
\Delta : (y) = \Delta : f(y).
\]
The profit in thousands of dollars per month in terms of production x thousand units is

\[(12) \quad \pi(x) = (2.3\pi + 72.0)x\]

end proc

\[\pi(x) = (2.3\pi + 72.0)x\]

\[\text{end proc}\]

\[
\text{profit in thousands of dollars per month} \\
\text{production} \times \text{thousand calculations}
\]

\[
\pi(x) = (2.3\pi + 72.0)x
\]

We introduce a cost function. Assume that there is a fixed cost of 72,000 dollars each month and that

\[
(11) \quad \frac{8 + 3\pi}{1000} = c(x)
\]

\[\text{end proc}\]

\[c(x) = \frac{8 + 3\pi}{1000}\]

\[\text{cost function} \quad \text{in thousands of dollars per month is} \quad c(x) = \frac{8 + 3\pi}{1000}\]

We introduce a profit function. Assume that there is a fixed cost of 72,000 dollars each month and that

\[\text{profit in thousands of dollars per month} \times \text{thousand calculations} \quad \pi(x) = (2.3\pi + 72.0)x\]
\[P(x) = \frac{0.000}{x} - \frac{10.000}{x} \]

Find the answer to the question (c) (the answer 100 calculations)

(d) What is the minimum number of calculations produced each month which

Now calculate the graph of \(P(x) \) (for) A window of \(x \) = 0 to 100. 100 is suggested. No

\[P(0) = \frac{0.000}{0} = \frac{\text{(constant)}}{x} = \frac{\text{(constant)}}{x} \]

\[P(x) = \frac{0.000}{x} - \frac{10.000}{x} \]

A common error was to say the even number of production.
\[
\begin{align*}
\text{(9)} & \quad \frac{(8 + \varepsilon \cdot 0)}{\varepsilon^0} \quad \text{normalization, p _prof} \\
& \quad \frac{0 + \varepsilon \cdot 0}{\varepsilon^0} \quad \text{normalization, p _prof} \\
& \quad \frac{0 + \varepsilon \cdot 0}{\varepsilon^0} \quad \text{normalization, p _prof} \\
& \quad \frac{0 + \varepsilon \cdot 0}{\varepsilon^0} \quad \text{normalization, p _prof} \\
& \quad \frac{0 + \varepsilon \cdot 0}{\varepsilon^0} \quad \text{normalization, p _prof} \\
& \quad \frac{0 + \varepsilon \cdot 0}{\varepsilon^0} \quad \text{normalization, p _prof} \\
& \quad \frac{0 + \varepsilon \cdot 0}{\varepsilon^0} \quad \text{normalization, p _prof} \\
\end{align*}
\]

\[
\begin{align*}
\text{(10)} & \quad \text{Maximize Profit in 1000} \cdot \text{Month} \\
& \quad \text{Maximize Profit in 1000} \cdot \text{Month} \\
& \quad \text{Maximize Profit in 1000} \cdot \text{Month} \\
& \quad \text{Maximize Profit in 1000} \cdot \text{Month} \\
& \quad \text{Maximize Profit in 1000} \cdot \text{Month} \\
& \quad \text{Maximize Profit in 1000} \cdot \text{Month} \\
& \quad \text{Maximize Profit in 1000} \cdot \text{Month} \\
\end{align*}
\]

\[
\begin{align*}
\text{(11)} & \quad \frac{\sqrt{x} + x}{0} = x \\
\end{align*}
\]