10.6, #6. f(x) is an odd function on $[-\pi, \pi]$. So $f(x) \cos nx$ and $f(x) \sin nx$ are respectively odd and even functions on $[-\pi, \pi]$. In particular,

$$a_{1} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos x \, dx = 0$$
$$a_{2} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos 2x \, dx = 0$$
$$a_{3} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos 3x \, dx = 0$$

and

$$b_1 = \frac{2}{\pi} \int_0^\pi \sin x \, dx = \frac{4}{\pi}$$
$$b_2 = \frac{2}{\pi} \int_0^\pi \sin 2x \, dx = 0$$
$$b_3 = \frac{2}{\pi} \int_0^\pi \sin 3x \, dx = \frac{4}{3\pi}$$

Moreover, $a_0 = 0$ since a_0 is the average value of f(x) on $[-\pi, \pi]$. Thus $F_1(x) = F_2(x) = (4/\pi) \sin x$, $F_3(x) = (4/\pi) \sin x + (4/3\pi) \sin 3x$.

10.6, #7. f(x) is an even function on $[-\pi, \pi]$. So $f(x) \sin nx$ and $f(x) \cos nx$ are respectively odd and even functions on $[-\pi, \pi]$. In particular,

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin x \, dx = 0$$

$$b_2 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin 2x \, dx = 0$$

$$b_3 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin 3x \, dx = 0$$

and

$$a_{1} = \frac{2}{\pi} \int_{0}^{\pi} x \cos x \, dx = \frac{2}{\pi} (x \sin x + \cos x) \Big|_{0}^{\pi} = -\frac{4}{\pi}$$
$$a_{2} = \frac{2}{\pi} \int_{0}^{\pi} x \cos 2x \, dx = \frac{2}{\pi} ((x \sin 2x)/2 + (\cos 2x)/4) \Big|_{0}^{\pi} = 0$$
$$a_{3} = \frac{2}{\pi} \int_{0}^{\pi} x \cos 3x \, dx = \frac{2}{\pi} ((x \sin 3x)/3 + (\cos 3x)/9) \Big|_{0}^{\pi} = -\frac{4}{9\pi}$$

Finally, $a_0 = \pi/2$ since a_0 is the average value of f(x) on $[-\pi, \pi]$. Thus $F_1(x) = F_2(x) = (\pi/2) - (4/\pi) \cos x$, $F_3(x) = (\pi/2) - (4/\pi) \cos x - (4/9\pi) \cos 3x$.

10.6, #9. $f(x) = x^2$ is an even function on $[-\pi, \pi]$. So $f(x) \sin nx$ and $f(x) \cos nx$ are respectively odd and even functions on $[-\pi, \pi]$. In particular,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = 0$$

and

$$a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx \, dx$$

= $\frac{2}{\pi} \left(\frac{x^2 \sin nx}{n} + \frac{2x \cos nx}{n^2} - \frac{2 \sin nx}{n^3} \right) \Big|_0^{\pi}$
= $4/n^2 \cos n\pi = (-1)^n 4/n^2$

Finally, $a_0 = \pi^2/3$ since a_0 is the average value of f(x) on $[-\pi, \pi]$. Thus

$$F_1(x) = \pi^2/3 - (4/\pi)\cos x,$$

$$F_2(x) = \pi^2/3 - (4/\pi)\cos x + (1/\pi)\cos 2x,$$

$$F_3(x) = \pi^2/3 - (4/\pi)\cos x + (1/\pi)\cos 2x - (4/9\pi)\cos 3x.$$

10.6, #15. g(x) = 1 for $-\pi/2 \le x \le \pi/2$ and = 0 elsewhere. Therefore g is even with average value 1/2, so $a_0 = 1/2$, $b_k = 0$, and

$$a_k = \frac{2}{\pi} \int_0^{\pi/2} \cos(kx) \, dx = \begin{cases} 0, & k \text{ even,} \\ +\frac{2}{k\pi}, & k = 1, 5, 9 \cdots \\ -\frac{2}{k\pi}, & k = 3, 7, 11, \cdots \end{cases}$$

The series is

$$\frac{1}{2} + \frac{2}{\pi} \Big(\cos x - \frac{1}{3} \cos(3x) + \frac{1}{5} \cos(5x) - \dots \Big).$$

This square-wave is shifted by $\pi/2$ to the left compared to the square-wave of example #1, $g(x) = f(x + \pi/2)$. Replacing x by $x + \pi/2$ in the Fourier series for f gives a series whose general term is

$$\frac{2}{k\pi}\sin(k(x+\pi/2)) = \begin{cases} +\frac{2}{k\pi}\cos(kx), & \text{for } k = 1, 5, \cdots \\ -\frac{2}{k\pi}\cos(kx) & \text{for } k = 32, 7, \cdots \end{cases}$$

10.6, #19. For the flute the first and second harmonics are equally dominant, while higher harmonics are weak. For the basson the dominant harmonic is the third; the second harmonic is moderate, and all other harmonics including the first harmonic are weak.

10.6, #20.