10.2, #12. If $f(x) = x^{-1}$, then $f'(x) = -x^{-2}$, $f''(x) = +2!x^{-3}$, and, in general, $f^{(n)}(x) = (-1)^n n! x^{-(n+1)}$. Evaluating these derivatives at 1 we have f(1) = 1, f'(1) = -1, f''(1) = 2!, and $f^{(n)}(1) = (-1)^n n!$. The taylor series is

$$1 - (x - 1) + (x - 1)^{2} - (x - 1)^{3} + \dots + (-1)^{n} (x - 1)^{n} + \dots$$

10.2, #19. $\sin \theta = \theta - \theta^3 / 3! + \theta^5 / 5! - \theta^7 / 7! + \cdots$. Thus

$$\frac{\theta - \sin \theta}{\theta^3} = \frac{\theta^3 / 3! - \theta^5 / 5! + \theta^7 / 7! - \dots}{\theta^3} = 1/3! - \theta^2 / 5! + \theta^4 / 7! - \dots$$

This has limit 1/6 as $\theta \to 0$.

10.2, #20. $\tan \alpha = \alpha + \alpha^3/3 + \cdots$. Thus

$$\frac{\tan\alpha}{\alpha} = 1 + \alpha^2/3 + \cdots.$$

This has limit 1 as $\alpha \to 0$.

10.2, #21. $\sqrt{1+x}$ has Taylor series $1 + x/2 - x^2/8 + x^3/16 - 5x^4/128 + \cdots$ using 10.2, #7 or the binomial series with p = 1/2. Thus

$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} = \lim_{x \to 0} \frac{x/2 - x^2/8 + x^3/16 - 5x^4/128 + \cdots}{x}$$
$$= \lim_{x \to 0} (1/2 - x/8 + x^2/16 - 5x^3/128 + \cdots) = 1/2$$

10.2, #28. The polynomials $P_n(x)$ for $n \leq 4$ approximate $\sqrt{1+x}$ well for $|x| \leq 1/4$. This estimate was made using the following parameters for the window: $-1.4 \leq x \leq 3$, $-.5 \leq y \leq 2$. So the interval of convergence based on this observation would be (-1/4, 1/4).

10.2, #30. f'(0), f''(0), f'''(0), and $f^{(10)}(0)$ are related to the coefficients C_1 , C_2 , C_3 , C_{10} of the Taylor series by the formula $f^{(j)}(0) = j! C_j$. Thus

$$f'(0) = 1, \quad f''(0) = 1, \quad f'''(0) = 2, \quad f^{(10)}(0) = 9! = 362880$$

10.2, #31. The derivatives asked for are $f'(0) = \text{and } f^{(6)}(0)$. They are related to the coefficients C_1 and C_6 , in the Taylor series by the formula in the previous problem, f'(0) = 0, since the coefficient of x is 0, and $f^{(6)}(0) = 6!/2! = 6 \cdot 5 \cdot 4 \cdot 3 = 360$.