8.Rev, #6. A cut by a plane perpendicular to the x-axis at x meets the doyghnut in an annulus with outer radius $3+\sqrt{1-x^2}$ and inner radius $3-\sqrt{1-x^2}$ for x in the range $-1 \le x \le 1$. The area of this annulus is $\pi\{(3+\sqrt{1-x^2})^2-(3-\sqrt{1-x^2})^2\}=12\pi\sqrt{1-x^2}$. The volume is $\int_{-1}^{1} 12\pi\sqrt{1-x^2} \, dx = 12\pi \cdot \pi/2 = 6\pi^2$.

8.Rev, #9. The arclength of $y=e^x$ from x=1 to x=2 is given by the integral $\int_1^2 \sqrt{1+e^{2x}} \, dx = 4.785$ by Simpson's rule. The substitution $w^2=1+e^{2x}$ will lead eventually to the same result.

8.Rev, #15. An income stream of \$100 per year for 20 years, assuming 10% annual interest rate compounded continuously has a present value of

$$P = \int_0^{20} 100e^{-0.1t} dt = 100(\frac{-1}{0.1})(e^{-2} - e^0) = \$864.66.$$

The future value of this amount is $B = \$864.66e^{0.1\times20} = \6389.06 . The balance will reach \$5000 in y years if

$$5000 = \int_0^y 100e^{0.1(y-t)} dt = 1000(e^{0.1y} - 1)$$

so $5 + 1 = e^{0.1y}$ and $0.1y = \ln 6$, so y = 17.92 years.

8.Rev, #18. If $Prob\{0 \le t \le 6\} = 0.10$, then

$$0.1 = \int_0^6 ce^{-ct} dt = 1 - e^{-6c}$$

so $e^{-6c} = 0.9$, $-6c = \ln 0.9$, and c = 0.0176. Then $\text{Prob}\{6 \le t \le 12\} = \int_6^{12} ce^{-ct} dt = e^{-6c}(1 - e^{-6c}) = 0.9(1 - 0.9) = 0.09$.

8.Rev, #25. The pressure at depth y below the surface is 62.4ylb/ft². The bottom has area π ft² and the force on the bottom, at depth 2ft, is $62.4 \times 2 \times \pi = 392$ lb. The area of the cylindrical region of the side between depth y and $y + \Delta y$ is $2\pi \Delta y$ ft² and the force on this region is approximately $62.4y2\pi\Delta y$ lb. The total force on the side is

$$\int_0^2 62.4y 2\pi \, dy = 784 \text{lb.}$$

the total force on side and bottom is 1176 lb.

8.Rev, #26. The apple is about 3.5 inches high. Slicing horizontally we get shapes which are approximately disks, so teh volume is about $\pi \int_0^{3.5} r(y)^2 dy$ where r(y) is the approximate radius. From the graph of teh apple we have

Using the trapezoid rule we find

$$V = 0.5\pi \left\{ \frac{1}{2} \cdot 0.5^2 + 1.5^2 + 1.75^2 + 2.0^2 + \dots + 2.0^2 + \frac{1}{2} \cdot 1.5^2 \right\} = 38.8 \text{in}^3.$$

The weight is $38.8 \times 0.03 = 1.16$ lb and the cost is $1.16 \times 80 = 93$ cents.