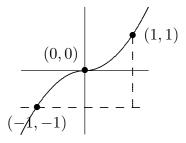
8.2, #6. Slice the solid by planes perpendicular to the axis of rotation. The solid is gotten by rotating the finite region enclosed by the graphs of $y = x^3$, y = -1, and x = 1. This region is illustrated below.



The graph of x^3 meets the line y=-1 at (-1,-1) and the line x=1 at (1,1).) A slice meeting the axis at $[x,x+\Delta x]$ has the approximate shape of a disk of radius x^3+1 and thickness Δx . Since the disk has volume $\pi(x^3+1)^2 \Delta x$, the total volume of all slices is $\sum \pi(x^3+1)^2 \Delta x$ and the solid has volume

$$\int_{-1}^{1} \pi(x^6 + 2x^3 + 1) \, dx = \pi \left(\frac{x^7}{7} + \frac{x^4}{2} + x\right) \Big|_{-1}^{1} = \frac{16\pi}{7} = 7.1808.$$

8.2, #7. Slice the solid by planes perpendicular to the axis of rotation. A slice meeting the axis at $[y, y + \Delta y]$ has the approximate shape of a disk of radius $1 - y^2$ (since $y = \sqrt{x}$) and thickness Δy . The volume of the disk is $\pi (1 - y^2)^2 \Delta y$, so the total volume of all slices is $\sum \pi (1 - y^2)^2 \Delta y$. Thus the solid has volume

$$\int_0^1 \pi (1 - 2y^2 + y^4) \, dy = \pi \left(y - \frac{2}{3}y^3 + \frac{y^5}{5} \right) \Big|_0^1 = \frac{8\pi}{15} = 1.6755.$$

8.2, #11. Slice the solid by planes perpendicular to the axis of rotation. A slice meeting the x-axis at x has the approximate shape of an annulus with outer radius 7, inner radius $7 - e^x$, and thickness Δx . The annulus has volume $\pi (7^2 - (7 - e^x)^2) \Delta x = \pi (14e^x - e^{2x}) \Delta x$. So the solid has volume

$$\int_0^1 \pi (14e^x - e^{2x}) \, dx = \pi (14e^x - (e^{2x}/2)) \Big|_0^1 = \pi (14e - 14 - (e^2 - 1)/2) = 65.5381$$

8.2, #12. Slice the solid by planes perpendicular to the x-axis. A slice meeting the axis at x has the approximate shape of a rectangular box of side lengths e^x , e^x , and Δx (since the line segment connecting the boundary points (x,0) and (x,e^x) of the region has length e^x). Since the box has volume $e^{2x}\Delta x$, the solid has volume

$$\int_0^1 e^{2x} dx = (e^{2x}/2) \Big|_0^1 = (e^2 - 1)/2 = 3.1945.$$

8.2, #15. Slice the tree into 6 circular cylinders of length 20 feet. The area of a circle of circumference C is $C^2/4\pi$. The corresponding approximations for the volume in cubic feet of the tree are

LEFT =
$$\frac{20}{4\pi} (26^2 + 22^2 + 19^2 + 14^2 + 6^2 + 3^2) = 2804.31$$

RIGHT = $\frac{20}{4\pi} (22^2 + 19^2 + 14^2 + 6^2 + 3^2 + 1^2) = 1730.01$
TRAP = $\frac{1}{2} (\text{LEFT} + \text{RIGHT}) = 2267.16$

8.2, #18. This graph is a quarter of the circle of radius 2, so the arclength will be π . The function $f(x) = \sqrt{4 - x^2}$ for $0 \le x \le 2$. Its derivative is $-x/\sqrt{4 - x^2}$ so

$$1 + (f'(x))^2 = 1 + \frac{x}{4 - x^2} = \frac{4}{4 - x^2}$$

and the integral is

$$\int_{0}^{2} \frac{2}{\sqrt{4-x^{2}}} \, dx$$

From tables or using the substitution $x = 2\sin\theta$ we find the arc length to be π .

8.2, #19. We have $f(x) = x^{3/2}$, so $f'(x) = (3/2)x^{1/2}$ and the integral is

$$\int_0^2 \sqrt{1 + (9/4)x} \, dx = (8/27)((11/2)^{3/2} - 1) = 3.5255.$$

This value can be checked by Simpson's rule.

8.2, #21.
$$y = \frac{e^x + e^{-x}}{2}$$
, $y' = \frac{e^x - e^{-x}}{2}$. So

$$\sqrt{1+(y')^2} = \sqrt{1+\frac{e^{2x}-2+e^{-2x}}{4}} = \sqrt{\frac{e^{2x}+2+e^{-2x}}{4}} = \frac{e^x+e^{-x}}{2}.$$

The length of the catenary on [-1, 1] is

$$\frac{1}{2} \int_{-1}^{1} (e^x + e^{-x}) \, dx = \frac{1}{2} (e^x - e^{-x}) \Big|_{-1}^{1} = e - e^{-1} = 2.35.$$