7. Rev, #20. Use formula 25 on page 367 to get

$$\int \frac{5x+6}{x^2+4} dx = \frac{5}{2} \int \frac{2x}{x^2+4} dx + 6 \int \frac{dx}{x^2+4} = \frac{5}{2} \ln(x^2+4) + 3 \arctan \frac{x}{2} + C.$$
7.Rev, #25.
$$\int \frac{(u+1)^3}{u^2} du = \int \frac{u^3+3u^2+3u+1}{u^2} du = \frac{1}{2}u^2 + 3u + 3\ln|u| - \frac{1}{u} + C.$$
7.Rev, #32. $u = x^2, du = 2x \, dx$ changes
$$\int \frac{x \, dx}{\sqrt{1-x^4}} \text{ to } \frac{1}{2} \int \frac{du}{\sqrt{1-u^2}}.$$

7.Rev, #35.

$$\int \frac{e^x}{1+e^x} dx = \ln(1+e^x) + C$$

$$\int \frac{e^x}{1+e^{2x}} dx = \int \frac{dw}{1+w^2} = \arctan w + C = \arctan e^x + C$$
(substituting $w = e^x$)
$$\int \frac{dx}{1+e^x} = \int \frac{dw}{w(1+w)} = \ln|w| - \ln|1+w| + C = x - \ln(1+e^x) + C$$
(substituting $w = e^x$ and using formula 26 on page 367)

7.Rev, #36. The averages over one cycle in ascending order are

$$\frac{1}{2\pi} \int_{0}^{2\pi} \cos t \, dt = 0,$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} \cos^{2} t \, dt = \frac{1}{2\pi} \frac{1}{2} (\cos x \sin x + x) \Big|_{0}^{2\pi} = \frac{1}{2}$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} |\cos t| \, dt = 4 \times \frac{1}{2\pi} \int_{0}^{\pi/2} \cos t \, dt \quad \text{(by symmetry)}$$

$$= \frac{2}{\pi} \sin t \Big|_{0}^{\pi/2} = \frac{2}{\pi}$$

The first average is clearly zero becuase of the oscillation of $\cos x$. The other averages are positive since $\cos^2 t$ and $|\cos t|$ are non-negative. Moreover, $\cos^2 t = |\cos t|^2 \le |\cos t|$ since $|\cos t| \le 1$. So the average for $\cos^2 t$ is less than that for $|\cos t|$.

7.Rev, #40. $y = x^2$ and y = 6 - x intersect at (2,4). Since a vertical strip of the shaded region lying over x has length $6 - x - x^2$, the average vertical height of the shaded region is

$$\frac{1}{2} \int_0^2 (6 - x - x^2) \, dx = \frac{1}{2} \left(6x - \frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_0^2 = \frac{1}{2} (12 - 2 - (8/3)) = \frac{11}{3}$$

7.Rev, #51. The integral is improper since $1/\sqrt{t+5}$ is undefined at t = -5. The integral converges since

$$\lim_{b \to -5^+} \int_b^{10} \frac{dt}{\sqrt{t+5}} = \lim_{b \to -5^+} 2\sqrt{t+5} \Big|_b^{10} = \lim_{b \to -5^+} 2(\sqrt{15} - \sqrt{b+5}) = 2\sqrt{15}.$$