7.9, #21. If $x \ge 3$, then $x^2 \ge 3x$ and $e^{-x^2} \le e^{-3x}$. Thus

$$\int_{3}^{\infty} e^{-x^{2}} dx \le \int_{3}^{\infty} e^{-3x} dx = -\frac{1}{3} \lim_{b \to \infty} e^{-3x} \Big|_{3}^{b} = \frac{e^{-9}}{3}.$$

Similarly if $x \ge n$, then $x^2 \ge nx$ and $e^{-x^2} \le e^{-nx}$. Thus

$$\int_{n}^{\infty} e^{-x^{2}} dx \le \int_{n}^{\infty} e^{-nx} dx = -\frac{1}{n} \lim_{b \to \infty} e^{-nx} \Big|_{n}^{b} = \frac{e^{-n^{2}}}{n}.$$

7.9, #22. $\frac{2x^2+1}{4x^4+4x^2-2}$ behaves like $\frac{2x^2}{4x^4}=\frac{1}{2x^2}$ for large x. By the p-test integral (a) should converge while integral (b) should diverge (since $(1/2x^2)^{1/4}=1/2^{1/4}x^{1/2}$). Indeed, $4x^2-2\geq 0$ for $x\geq 1$, so

$$\int_{1}^{\infty} \frac{2x^{2} + 1}{4x^{4} + 4x^{2} - 2} dx \le \int_{1}^{\infty} \frac{2x^{2} + 1}{4x^{4}} dx$$

$$= \int_{1}^{\infty} \frac{dx}{2x^{2}} + \int_{1}^{\infty} \frac{dx}{4x^{4}}$$

$$= \frac{1}{2} + \frac{1}{12} = \frac{7}{12},$$

using the antiderivatives -1/2x and $-1/12x^3$ to calculate the two integrals. On the other hand,

$$\int_{1}^{\infty} \left(\frac{2x^2 + 1}{4x^4 + 4x^2 - 2} \right)^{1/4} dx \ge \int_{1}^{\infty} \left(\frac{2x^2}{4x^4 + 4x^4} \right)^{1/4} dx$$

since $2x^2 + 1 > 2x^2$ and $4x^4 + 4x^2 - 2 < 4x^4 + 4x^4$ for $x \ge 1$. The last integral diverges by the *p*-test.

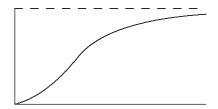
7.9, #25. The tangent line approximation 1+t to e^t at t=0 lies below the graph of e^t since the graph of e^t is concave-up. Thus $1+t \le e^t$ for all t. Substituting t=1/x in this inequality gives $1+(1/x) \le e^{1/x}$ or $e^{1/x}-1 \ge (1/x)$. Thus

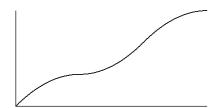
$$\int_{1}^{\infty} \frac{dx}{x^{5}(e^{(1/x)} - 1)} < \int_{1}^{\infty} \frac{x}{x^{5}} dx$$

The second integral converges by the p-test, so the first one converges as well.

7.10, #2: F(x) starts at (0,0) and is increasing, concave-up on its initial segment, concave-down on its second segment, where it approaches a horizontal asymptote.

7.10, #3. F(x) starts at (0,0) is increasing, concave-down on its initial segment, concave-up on its middle segment, concave-down on its last segment.





7.10, #6. Note the following features of the six slope fields: (I) and (III) have horizontal slopes for large |x|. (II) and (IV) have steep slopes for large |x| with (IV) having almost vertical slopes. Lastly, (V) and (VI) are the only slope fields with negative slopes. It follows easily that (d) $e^{-0.5x}\cos x$ is matched with (V) and (f) $-e^{-x^2}$ with (VI). The difference between (I) and (III) is that of scale with respect to the x-direction. So (b) e^{-2x^2} and (c) $e^{-x^2/2}$ are matched respectively with (I) and (III). Finally, (a) e^{x^2} is matched with (IV) and (e) $(1/(1+0.5\cos x)^2)$ with (II). Indeed, since $1/2 \le 1+0.5\cos x \le 3/2$, it follows that $4/9 \le 1/(1+0.5\cos x)^2 \le 4$. Thus the steepness of the slope field of (e) is bounded, and the match must be (e) with (II) and (a) with (IV).

7.10, #8.
$$\frac{d}{dx} \int_0^x \sqrt{3 + \cos(t^2)} dt = \sqrt{3 + \cos(x^2)}$$
.

7.10, #10.
$$\frac{d}{dx} \int_{0.5}^{x} \arctan(t^2) dt = \arctan(x^2)$$
.