7.3, #17. Set w = x2+4, dw = 2x dx. Then w = 20 if x = 4, w = 5 if x = 1, and

ó
õ
1

4 
x   ____
Öx2+4
 
 dx = 1
2
ó
õ
5

20 
w1/2 dw = 1
3
w3/2 ê
ê
ê
5

20 
= 1
3
(53/2-203/2) = -26.087.


7.3, #20. Set w = x2+4x+5, dw = (2x+4) dx. Then w = 1 if x = -2, w = 5 if x = 0, and

ó
õ
0

-2 
2x+4
x2+4x+5
 dx = ó
õ
5

1 
dw
w
= ln5-ln1 = ln5 = 1.609.


7.3, #27. x2+4x+5 = (x2+4x+4)+1 = (x+2)2+1. Set x+2 = tanq, dx = sec2q dq. Then

ó
õ
dx
x2+4x+5
= ó
õ
dx
(x+2)2+1
= ó
õ
sec2q
tan2q+1
 dq
= ó
õ
dq = q+C = arctan(x+2)+C
using the trigonometric identity tan2q+1 = sec2q.



7.3, #29. The area is ò02xex2 dx. We evaluate this by substitition. Let u = x2. Then du = 2x dx. Thus the area is

ó
õ
2

0 
xex2 dx = 1
2
ó
õ
2

0 
2xex2 dx = 1
2
ó
õ
22

02 
eu du = 1
2
(e4 - e0) = 1
2
(e4 - 1) @ 26.7991.


7.4, #3. Set te5t = uv¢, where u = t, v¢ = e5t. Then u¢ = 1, v = (1/5)e5t, and

ó
õ
te5t dt = 1
5
te5t- 1
5
ó
õ
e5t dt = 1
5
te5t- 1
25
e5t+C.


7.4, #4. Set t2e5t = uv¢, where u = t2, v¢ = e5t. Then u¢ = 2t, v = (1/5)e5t, and

ó
õ
t2e5t dt = 1
5
t2e5t- 2
5
ó
õ
te5t dt
= 1
5
t2e5t- 2
5
é
ê
ë
1
5
te5t- 1
25
e5t ù
ú
û
+C
= 1
5
t2e5t- 2
25
te5t+ 2
125
e5t+C


7.4, #6. Set ylny = uv¢, where u = lny, v¢ = y. Then u¢ = 1/y, v = y2/2, and

ó
õ
ylny dy = 1
2
y2lny- 1
2
ó
õ
y2
y
 dy = 1
2
y2lny- 1
4
y2+C.


7.4, #7. Set x3lnx = uv¢, where u = lnx, v¢ = x3. Then u¢ = 1/x, v = x4/4, and

ó
õ
x3lnx dx = x4lnx
4
- 1
4
ó
õ
x4
x
 dx = x4lnx
4
- x4
16
+C.


File translated from TEX by TTH, version 2.00.
On 14 Aug 1999, 21:22.