7.1, #21.

ó
õ
æ
ç
è
3
t
- 2
t2
ö
÷
ø
 dt = 3ln|t|+2t-1+C


7.1, #26.

ó
õ
(ex+5) dx = ex+5x+C


7.1, #43. The indefinite integral is 7.1, #14 on assignment 6.

ó
õ
2

1 
1+y2
y
 dy = (lny+y2/2) ê
ê
2
1 
= ln2+3/2 = 2.193


7.1, #54. The average value of sint on the interval 0 £ t £ 2p is

1
2p-0
ó
õ
2p

0 
sint  dt = 0.
We can evaluate this integral using an antiderivative or by knowing that the areas above and below the x-axis are equal. This is becasue sin(t+p) = -sint. The part of the graph above the x-axis balances the part below. This is a huristic argument that the average should be 0.

The average value of sint on 0 £ t £ p is

1
p
ó
õ
p

0 
sint  dt = 1
p
[-cost]0p = 1
p
(-(-1)-(-1)) = 2
p
.


7.2, #2. Use the substitution u = x2, du = 2x dx to get

ó
õ
2xcos(x2) dx = ó
õ
cosu du = sinu+C = sin(x2)+C


7.2, #5. Use the substitution u = sinx, du = cosx dx to get

ó
õ
esinx cosx dx = ó
õ
eu du = eu+C = esinx+C


7.2, #6. Use the substitution u = x2+1, du = 2x dx to get

ó
õ
x
x2+1
 dx = 1
2
ó
õ
du
u
= 1
2
ln|u|+C = 1
2
ln(x2+1)+C


File translated from TEX by TTH, version 2.00.
On 14 Aug 1999, 21:19.